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1. Phys.: Condens. Matter 4 (1992) 8181-8186. Plinted in Ihe UK 
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AbsLracL We study the temporal behaviour of donors in DET fluorescence embedded 
in restricted-geometry objects, particulary around the mssover time t,, U, see the 
differences behveen the behaviour of regular mswicted-geometry objecls and that of 
actual fractal structures All the objecls show fractional appamnt dimensions at around 
tGr,  ?he apparent dimensions of the fractal objects in addition have a periodic willation 
Ihe peaks of which exceed the dimensions of Ihe embedding space. 

1. Introduction 

Non-radiative direct electronic energy transfer (DET) between donor and acceptor 
molecules or groups in the condensed phase has been studied by many researchers 
over the last 40 years. The approach taken in these studies was to follow the quench- 
ing reaction of optically excited donors in the presence of groundstate acceptors. 
DET was fust studied by Forster (1949) in systems where the acceptors are randomly 
distributed in the three dimensional (3D) rigid medium. Theoretical formulation of 
the excitation transfer in two dimensions (20) was proposed by Wolber and Hudson 
(1979) for randomly distributed systems and by Zumofen and Blumen (1982) for 
regular lattices. Donor fluorescence decay functions were calculated by Hauser et 
a1 (1976) and Baumann and Foyer (1986) in respective dimensionalities for excita- 
tion transfer processes. These ideas have been extended to DET on fractal structures 
with self-similarity and dilation symmetry (Klafter and Blumen 1984, 1985). Donor 
fluorescence decay in these systems can produce fractional dimensions. 

When the space containing the donor and acceptor molecules is very much larger 
than the distance over which the energy transfer takes place, the donor decay assumes 
a familiar form in 3D systems. However, when the donors and acceptors are confined 
to small spaces, curious features appear in the donor fluorescence function (Blumen 
el a1 1986). These appear because the distribution of the molecules B finite. The 
idea of the consequence of DET in a restricted geometry was first proposed by Yang 
et a1 (1986, 1989) and developed theoretically by Blumen and co-workers. Some of 
these ideas were experimentally tested on porous silicas (Rojanoki ef ai 1986), Vycor 
glass p a n g  et a1 1989), cylindrical pore polymer membranes (Dozier el a1 1986) and 
polymer colloids (Pekcan el a1 1988, 1990). Fluorescent dyes and phosphorescent 
groups adsorbed to the surface in these spaces can undergo energy transfer within 
this restricted environment. 
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In this work the Monte Carlo technique is used to determine the temporal be 
haviour of the donor intensity 1( t )  via direct dipolar energy aansfer process in various 
Euclidean and fractal structures. The results are fitted to the Klafter-Blumen equa- 
tion which is useful in analysing simulated data to determine the dimensions from the 
d[ln{-ln[I(t)]]n/d(lnt) versus In t plot. The apparent dimensionality due to the 
finite-size effect in various geometries was studied. In fractal geometries, oscillations 
in the apparent dimensions arising from the dilational self-similarity of the structure 
were seen. 

2. lheory 

Our principal aim in this work was to compare the decay cuwes of donors embedded 
in fractal and regular geometrical objects of finite size (restricted geometries). 

Following Forster (1949) we note that the lifetime of an isolated donor is deter- 
mined by its natural decay rate. If there is an acceptor in the Vicinity, the donor can 
also undergo induced decay via DET. For a donor-acceptor distance r the combined 
decay of the donor is governed by 

f ( t , ~ )  = exp[-t/ro - t / ~ ~ ( r / r ~ ) - ~ ] .  (1) 

For dipoledipole interaction, s is equal to 6. Angular dependences are neglected; 
this corresponds to averaging over all angles. ro is the distance where the induced 
decay rate due to DET is equal to the natural radiative decay rate r,, of the donor. 

The probability that an acceptor site is full is p, and the probability that it is 
empty 1 - p .  The ensemble-averaged probability that the donor has not decayed by 
the time t is then 

f( t ,r)  = [ e x ~ ( - t / r ~ ) l { ( 1  - P )  + p e x ~ I - ~ / r ~ ( ~ / ~ ~ ) - " l } .  (2) 

In real life, p < 1 as there are many sites on a given lattice but only a minute 
fraction are tilled. In this limit the binomial distribution leading to equation (2) can 
be replaced by a Poisson law distribution g(j) = exp(-p) pJ / j ! ,  leading to 

f(t,r) = lexp(-~/ro) l  (expU-p{l- ex~ l - t / r~ ( . /~~) - " l} I I )  (3) 

after replacing the sum over all filling numbers by the exponential whose series expan- 
sion the sum becomes. This result is correct only for very small filling probabilities p. 
In simulations where a calculation site corresponds to many actual sites, equation (3) 
is more appropriate than equation (2) and should be used, even for large values of p .  

For many acceptors A; occupying the sites X,, the lifetime of a donor located at 
Y, is governed by 

where ri = IX; - Yj I. 

an infinite 3D space this integral is 
For acceptors distributed uniformly, the sum can be replaced by an integral. Over 

f( t ,?)  = [ e x ~ ( - ~ / . r , ) l { e x ~ [ - ~ ~ , ( ~ ~ r ~ / 3 ) ~ ( ~ ) ~ " ~ 1 } .  (5) 
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This has been generalized by Kiafter and Blumen (1984, 1985) to include all inhi te  
and uniform media of Euclidean or fractal dimensions d as 

f ( . t ,  5 )  = [ex~(-.t/r,)lIex~[-~p,Vdrgdr(l- d/6)td/611. (6) 

The Klafter-Blumen equation (equation (6)) is valid for infinitely extended objects 
of dimensions d. For restricted geometries it describes the limiting cases, i.e. the 
behaviour of the donors at times much shorter and much longer than the typical 
crossover time at which the donor sees the edge of the object that it is in (tCr = 
rO(Robj/rO)e)  where Robj is the typical radius of the object. For times much less 
than ths  time scale the donor sees a 3D environment; at much longer times it sees 
the object as a point For times comparable with this typical time scale the Klafter- 
Blumen equation gives no information because the concept of dimensions, whether 
fractal or Euclidean, requires self-similarity, but self-similarity is lost when the edge 
of the object is visible. 

Intuitively we expect the intermediate behaviour to hold for $ < (t/tcr)lI6 < 2. 
This gives about four orders of magnitude in the ratio of shortest to longest times. 
Most of the experiments may fall in this domain. Therefore we tried to h d  out when 
an object that seems to have fractal dimensions is really a fractal object and when 
one is seeing the edge effects. 

3. Calculation 

We simulated the decays of donors placed in the following objects: a cube, a Menger 
sponge of the same Size, a Sierpinsky carpet, a thin long cylinder, a flat disc and a 
cylinder whose length is equal to its diameter (&I 1991). 

In each case the donor and the acceptor sites were placed by assigning random 
coordinates within the object For the cylindrical objects the z coordinate, the az- 
imuthal angle and the square of the radius were chosen randomly, the last for equal 
sampling of areas close to and far from the axis. For the Menger sponge, U) full 
cubes were selected randomly, and within each cube a subcube was randomly chosen. 
The process was repeated until the chance that a donor and acceptor fall in the 
same subcube is negligibly small. Then random coordinates were chosen within that 
subcube. The carpet was treated in a similar way, but with four filled sectors at each 
step. 

The interaction between the donors and acceptors was treated according to equa- 
tion (4). Acceptor sites were assumed to have a Poisson distribution of average 
p acceptors in them. The donor had an equal probability of being in any of the 
randomly selected donor sites. 

Factoring out the natural decay by defining @ ( t )  = exp(t/To)Cj f ( t ,  q), one 
obtains from equation (6) 

ln{-ln[@(t)]} =In[pp,VdrtI'(l - d / 6 ) ] +  (d /6 ) ln t .  (7) 

For each object we plotted a ~ l n { - l n [ @ ( ~ ) ] } ~ / a ( l n  t) versus In t. Equation (7) 
indicates that these are the dimensions that the donor sees at that time. Of course the 
dimensions are a well defined quantity for only self-similar media but Klafter-Blumen 
dimensional analysis is often used for restricted geometries. 
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4. Results and discussion 

The decay curves indicate that all objects appear as zero dimensional, i.e. p i n t  like 
at times long compared with the critical time at which the donor sees the edge of the 
object. Wr times much shorter than the crossover time the dimensions tend towards 
the actual geometrical dimensions of the object. The smaller-dimensional objects 
reach their geometrical dimensions. 

The geometrical dimensions Seen by the donors in the thin rod are 3 for 1 < 
tcCl = T ~ ( R , , , ~ / T ~ ) ~ .  For times between tcrl and tcrZ = tcrl(Zpod/2Emd)6 the rod 
would be. expected to be seen as a one-dimensional object, and for times greater 
than tcrl it would be Seen as a p i n t  Figure l(u) shows that, between tCp1 and icr2, 
d = 1 is reached. At shorter times, d = 3 is not reached within the resolution of 
this simulation. The geometrical dimensions of the Aat disc are 2 for 1 < t,, = 
ro(Rdi,,/~o)6. These dimensions are almost reached (figure l (b)) .  
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Figure 1. Plots of d vems In t in regu- 
lar p m e t r i c a l  objecu of low dimensions: 
(a) Ihin rod; (b) Rat disc. In the Bgure, 
L, is the crossover time as defined in the .. 
lexl and, m (a), i,,, and tc.2 refer 10 the 
times at which the donon sec lhe radius - .. .. .... 
and the ends of the rod, Ibpeclively. 

Rotund objects such as the cube and thick cylinder have a harder time reaching 
d = 3 (figures 2(u) and 2(b)). Moreover, at very small times, sampling errors render 
this calculation useless. 

With the fractal objects we also noted the tendency to reach their nominal fractal 
dimensions; however, in these object$ there is also an oscillation in the Klafter- 
Blumen dimensions (9). This effect can be seen in the Menger sponge (figure 3(u)),  
but it is much more pronounced in the Sierpinsky carpet (figure 3(b)), a dust-like 
object. These oscillations are found because the volume over which the charge density 
is integrated increases rapidly when the filled parts of the fractal object become visible 
to the donor and it increases slowly when the empty parts become visible. Note that 
the Klafter-Blumen dimensions are defined from the infinitesimal increase in the 
volume when the radius is increased infinitesimally. Thus they are not the same 
as the fractal dimensions. However, the Klafter-Blumen dimensions when averaged 
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I I l l  to) - 1  I l l  

Pigore 2 Plots of d versus In t io regular geomet- 
rical objeeIs of high dimensions (a) cube; (b) thick 
cylinder. (tcr b the uos" time.) 

I nt t, 
P@m J. Plots of d wmus In t in frdcIal objects 
of high and low dimensions (a) Menger sponge; 
(b) Sierpinsky carpet. (+. k the ausover time.) 

over a self-similarity wale of the fractal object give its fractal dimensions. For this 
reason the peah obselved in the Klafte-Blumen dimensions may and do exceed the 
dimensions of the space in which the object is embedded. This is most clearly seen in 
dust-like objects such as the Sierpinsky carpet (d = log 4/ log 3 = 1.26). The more 
dust is l i e  the carpet, ie. with lower fractal dimensions, the higher are the peaks of 
the Klafter-Blumen dimensions. In the Menger sponge, a continuous object, these 
oscillations are seen only in the slope of the dimensions as they decrease near tcr. 

The transition region where for shorter times the object is seen at high dimensions 
and for longer times it is Seen at lower dimensions is as large as expected. Even 
though it is possible to tell a Menger sponge (d = log2O/log3 = 2.73) from 
a regular cube (d = 3), this takes many measurements to tell where the edge of 
the object is. Without finding the size of the object, one can easily be misled into 
believing that a bactal object has been found when one is merely seeing the edge of 
a regular geometrical object The situation in real life is even more difficult because 
finite-sizerestricted geometrical objects occur in all sizes. The edge effecB will begin 
at times ten times shorter than the critical time for the smallest bodies and last until 
about ten times the critical time for the largest bodies. Thus, only for times much 
shorter than the crossover time for the smallest objects can one see the dimensions 
correctly; for almost all time intervals, DEI decay curves will give a lower estimate of 
the dimensions and can lead the experimenter into believing that a fractal object has 
been found when it has not. 
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